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2 Humans and Automated
Decision Aids: A Match 
Made in Heaven? 

Kathleen L. Mosier & Dietrich Manzey 

In the tiny villages and towns around Winchester, UK, motorists have long had problems 
with GPS navigation. They follow the route their devices suggest and repeatedly wind 
up stuck — the roads are simply too narrow for some wider vehicles. The problem got 
so bad in the town of Exton that a bright yellow sign was erected to warn drivers NOT to 
follow their GPS and to, instead, rely on common sense. These are the times we live in, 
folks (https://www.ranker.com/list/9-car-accidents-caused-by-google-maps-and-gps/ 
robert-wabash). 

AUTOMATED DECISION SUPPORT: WHAT AND WHY? 

For the last four decades, computer-based automated or even autonomous systems 
have changed our life considerably. Specifc sorts of automation are the so-called 
automated decision support systems (DSSs), which are ubiquitous in today’s high-
technology world. Designed as a support tool for humans, they provide — at discrete 
points in time, either automatically or on demand — certain information about the 
state of the world that can improve informed decision making. Beyond that, they also 
may provide recommendations on actions and/or predictions of outcomes in the near 
future in order to help the human to arrive at proper decisions about actions. Their 
main goal is to improve the reliability and quality of human decision making at work 
or in everyday life. 

Two basic aspects of human decision making have been referred to as front-end 
and back-end processes (Mosier & Fischer, 2010). Front-end processes include all 
cognitive judgment processes needed for a proper situation assessment and situation 
awareness (SA) (Endsley, 1995, 2000), for example, information search, information 
analysis, risk assessment, or identifcation of constraints for possible actions. These 
usually provide the basis for the back-end processes, which include the actual deci-
sion making, that is, the selection and planning of proper actions. Corresponding 
to this basic distinction, DSSs can be categorized, albeit relatively coarsely, as to 
whether they support the front-end or back-end of decision making. Typical exam-
ples of front-end DSSs are alarm systems, such as alarm lights that illuminate on 
cockpit or other control displays to alert the operator about a problem, or the colli-
sion prevention assist in an automobile, a sensor that monitors a vehicle’s distance 
from other vehicles in front and beeps if the driver accidentally gets too close to the 
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car ahead. More complex front-end assistance systems include information systems, 
such as those that provide traffc information on radar displays or moving maps or 
provide surgeons with information about the location of specifc landmarks to help 
them navigate through a patient’s anatomy. In contrast, back-end DSSs include all 
systems that provide automated support for decision choice and action selection, 
such as the GPS systems in cars, which analyze a given situation and then suggest 
the quickest route to a location or instruct the individual exactly on what to do. Even 
more complex systems may dynamically incorporate both front-end and back-end 
processes. Examples of this latter type are sophisticated DSSs in aircraft cockpit 
like the Ground Proximity Warning System (GPWS) or the traffc collision avoid-
ance system (TCAS) that start as pure front-end systems alerting pilots of a possibly 
critical situation (e.g., “terrain, terrain” or “traffc, traffc”) but switch to back-end 
directives instructing the pilot exactly what to do if the situation becomes more criti-
cal (e.g., “pull up” or “climb/descend”). Note that our distinction of front-end and 
back-end DSSs also fts to models describing different types and levels or degrees of 
automation (e.g., Endsley & Kaber, 1999; Onnasch, Wickens, Li, & Manzey, 2014; 
Parasuraman, Sheridan, & Wickens, 2000). For example, Parasuraman et al. (2000) 
distinguish different types and levels of automation with types of automation refer-
ring to the stage of information processing that is supported. Automation support of 
the frst two stages — information acquisition and analysis — would correspond to 
front-end support, while automation support of later stages of information process-
ing, that is, decision and response selection, would correspond to back-end support. 
Because back-end DSSs often implicitly also include automated situation assess-
ment, they can be considered to represent a higher degree of automation than front-
end support, that is, they support the human user in both situation assessment and 
selection of actions (Onnasch et al., 2014). 

The intent of all of these DSSs is to compensate for the inadequacies of the human 
decision-maker and to make decisions more rational, compared to the often-observed 
issues of biases and heuristics in human decision making (Gigerenzer & Todd, 1999; 
Kahneman, 2011). If this would work, providing a DSS as a support tool for a human 
decision maker would result in a well-suited pairing with an almost perfect outcome — 
like a match made in heaven! However, before treating DSSs in such a romantic 
way, some caveats are necessary. Evidence over the past 22 years since this volume 
was frst published suggests that the relationship between human decision makers 
and DSSs is not as ideal as expected. Although much of the time DSSs successfully 
enhance human performance, reliance on imperfect automation has the unintended 
consequence of worsening performance when automated information or advice is 
not correct. In fact, human tendencies toward the use of heuristics, or shortcuts, in 
judgment and decision making, which DSSs should help to avoid, can be triggered by 
DSSs, eroding the quality of the human-automation match and causing it to be more 
earth-like, with weaknesses as well as strengths, than a heavenly ideal. In particular, 
the presence of DSSs may foster automation bias, “the tendency to use automated 
cues as a heuristic replacement for vigilant information seeking and processing…” 
(Mosier & Skitka, 1996, p. 205). 

This chapter particularly focuses on the performance consequences of DSSs with 
a particular emphasis on the issue of automation bias as demonstrated in research 
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across many domains. We examine the factors that impact automation bias including 
operator characteristics such as trust in the system and level of perceived account-
ability; system characteristics such as reliability, transparency, and understandabil-
ity, and the level and degree of automation involved; and the characteristics of the 
task-context including time pressure, consequences of errors, workload, or working 
in redundant work teams. We also discuss the challenge of balancing the pros and 
cons of using automation as a heuristic in decision making as well as current trends 
and future advances in automated systems. 

AUTOMATION BIAS: STILL AROUND AFTER ALL THESE YEARS 

Designers responded to “pilot error” and the increasing cockpit workload by attempt-
ing to remove the error at its source, that is, to replace human functioning with device 
functioning — in their view, to automate human error out of the system. But there 
were two faws in this reasoning: (1) The devices themselves had to be operated and 
monitored by the very humans whose caprice they were designed to avoid; human 
error was not eliminated but relocated. (2) The devices themselves had the potential 
for generating errors that could result in accidents (Wiener, 1985, p. 78). 

Automation bias was frst identifed in cockpit crews and was characterized in the 
tradition of classical decision heuristics and biases (Kahneman, Slovic, & Tversky, 
1982) as a decision shortcut. It manifests in two types of performance consequences: 
omission errors result when decision makers do not take appropriate action because 
they are not informed about a situation, problem, or imminent system failure by 
automated decision aids; and commission errors occur when decision makers take 
inappropriate action because they over-attend to information or directions from an 
automated decision aid (Mosier & Skitka, 1996; Mosier, Skitka, Heers, & Burdick, 
1998). The distinction between two manifestations of automation bias is related to 
the distinction of reliance and compliance in human-automation interaction pro-
posed by Meyer (2004). Whereas reliance describes how much an individual trusts 
the alert function of a DSS in the case of critical events and, thus, reduces his or her 
own monitoring of the environment, compliance describes the behavioral tendency 
to trust and follow a DSS’s recommendation. Given this, automation bias in terms 
of omission errors can be understood as a consequence of overreliance on a DSS, 
whereas commission errors refect a sort of “over compliance” with a DSS. 

Several possible mechanisms underlie these errors. First, automated aids present 
powerful, salient decisional cues and are widely believed to be accurate. The “cogni-
tive miser” perspective suggests that people tend to take the road of least cognitive 
effort and may diffuse responsibility for decision tasks to automated aids, resulting 
in incomplete cross-checking of available information. This is related to automation-
induced complacency, which has been documented as a factor in automation-related 
incidents and accidents (see Parasuraman & Manzey, 2010, for a review). Second, 
operators may inattentively process information that contradicts automated direc-
tives, analogous to a looking but not “seeing” or inattentional blindness effect 
(Simons & Chabris, 1999), or may “see” information that confrms the automation 
even though it is not actually present, a phenomenon labeled “phantom memory” 
(Mosier et al., 1998). A third possibility is that people see but actively discount 

Prop
ert

y o
f C

RC Pres
s



22 Human Performance, Volume One 

information from less automated sources because they believe the automated deci-
sion support system is more likely correct (Skitka, Mosier, & Burdick, 1999). It is 
likely that the mechanism varies along with the task context, for example, whether 
automated information is made more salient than other information or whether time 
pressure is present. Additionally, the mechanism may depend on whether the DSS 
targets the front or back end of decision making. 

Since the early research in the 1990s, automation bias has been identifed not only 
in aviation but also in several other domains in which technology and automated 
decision support are commonplace. 

Evidence for Automation Bias from Different Domains 
Aviation 
A series of studies of human-automation interaction in aviation (and aviation-like 
laboratory tasks) by Mosier and colleagues provided the cradle of automation bias 
research (Mosier, Palmer, & Degani, 1992; Mosier et al., 1998; Skitka et al., 1999). 
In the frst of this series, Mosier et al. (1992) studied the effects of an automated 
electronic checklist on decision making in an ambiguous simulated engine fre situ-
ation, that is, there were conficting cues concerning which engine was on fre. The 
electronic checklist for ENGINE FIRE prompted the pilots to shut down the wrong 
engine (i.e., the one not affected by fre). Although available information from other 
cockpit instruments contradicted the electronic device, a total of 75% of pilots fol-
lowed the wrong recommendation of the decision aid. This was in stark contrast to 
a control group of pilots who used a traditional checklist for the same task and com-
mitted this error to a considerably lesser extent (25%). 

In another study, a sample of experienced commercial pilots performed simulated 
fights in a low-fdelity fight trainer equipped with various advanced cockpit auto-
mation systems (Mosier et al., 1998). During the fight, they were exposed to auto-
mation failures creating situations for omission and commission errors, including an 
altitude clearance that did not get loaded correctly, a heading change that was not 
executed properly by the fight system, and a false engine-fre alert on the electronic 
EICAS (engine-indicating and crew-alerting system) that was not supported by any 
other instrument readings. While the frst two automation errors provided opportuni-
ties for an error of omission if not detected by the pilots, the latter one provided an 
opportunity to commit a commission error. Basically, all of these automation fail-
ures were easily detectable by the use of relevant information available from other 
cockpit instruments. Yet, the frequency of omission errors was 55% — and 100% of 
the pilots decided to shut down the engine in response to the erroneous EICAS alert. 
Interestingly, 67% of the pilots reported that they had seen at least one other indica-
tion supporting the EICAS fre alert, which in fact was not there. 

Further evidence for automation bias was also found in a group of nonpilots 
performing a low-level fight simulation task with and without automation support 
(Skitka et al., 1999). During the task, several automation failures occurred — six 
failures where the automation failed to prompt the participants of a critical event and 
another six where the aid gave a wrong recommendation. Again, the omission error 
rate in response to the frst type of automation failure was 41%. In contrast, only 
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3% of the critical events were missed by a control group performing the task with-
out automation support. A similar picture also emerged for commission errors. A 
total of 65% of participants followed the wrong advice of the decision aid, although 
other available information directly contradicted the advice and the participants 
were informed that the other information would be perfectly valid. The common 
characteristic of all these fndings was that the presence of an automated support 
for decisions made pilots less likely to seek and assess information from other 
sources. Since this early work, many other examples of automation bias in interac-
tion with decision aids in advanced cockpits and also air traffc control have been 
reported (e.g., Metzger & Parasuraman, 2005; Rovira & Parasuraman, 2010; Sarter 
& Schroeder, 2001) also as contributing factors to fatal accidents (e.g., Dutch Safety 
Board, 2010). Many of these cases suggest that automation bias might not necessarily 
result in manifest errors of omission (or commission) but rather a delayed detection 
and response to contradictory information leaving insuffcient time to respond to a 
critical situation (de Boer, Heems, & Hurts, 2014). 

Health Care 
Automation bias in interactions with automated decision aids has also become a con-
cern in the health care domain (Goddard, Roudsari, & Wyatt, 2012, 2014; Lyell et al., 
2017). One set of studies addressed the performance consequences of so-called clini-
cal decision-support systems (CDSSs) on the quality of clinical judgment and deci-
sion making (Goddard et al., 2014; Lyell et al., 2017; McKibbon & Fridsma, 2006; 
Tsai, Fridsma, & Gatti, 2003; Westbrook, Coiery, & Gosling, 2005). CDSSs are 
computer-based systems that provide physicians with information or advice, includ-
ing clinical knowledge, warnings, and recommendations, in order to improve their 
clinical judgment and decision making. The researchers included a variety of sys-
tems ranging from electronic information resources like PubMed or Google, which 
loosely can be considered CDSSs — to specifc diagnostic systems or electronic 
prescribing systems. Overall, consulting these systems was shown to improve the 
quality of clinical decisions and diagnoses (Garg et al., 2005). However, this general 
beneft can be offset at least to some extent by consequences of too much reliance 
on the CDSS when the suggestions or recommendations are wrong or suboptimal, 
refecting automation bias. This negative effect has been shown by a number of stud-
ies comparing the correctness of clinical diagnoses before and after consulting a 
CDSS (Friedman et al., 1999; McKibbon & Fridsma 2006; Westbrook et al., 2005). 
Correct CDSS advice increased the number of correct diagnoses after consultation 
of the aid by 2%–21%. However, at the same time, incorrect advice led clinicians 
in 6%–11% of cases to commit commission errors, that is, to change their initially 
correct diagnoses into wrong ones after consulting the false advice of the aid, which 
reduced the net gain effects of the CDSS signifcantly. 

While these instances of automation bias involved only commission errors, 
more recent studies investigating the effects of electronic prescribing systems have 
revealed increased risks for both omission and commission errors caused by using 
this sort of CDSS (Lyell et al., 2017). The main function of electronic prescribing 
systems is to alert and warn a physician of possible risks due to an inappropriate or 
dangerous medication or unwanted interaction effects among different prescriptions. 
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Compared to a control group that made prescription decisions without the support 
of the CDSS, correct alerts by the system successfully decreased the rate of pre-
scription errors by about 43%. However, in the case of missed alerts or false alarms 
of the CDSS, prescription errors due to omission errors (e.g., overlooking a wrong 
dose or a risky interaction effect that was not indicated by the system) and com-
mission errors (e.g., abstaining from prescribing an actually safe medicine that was 
falsely indicated as risky by the system) increased by 28.7% and 56.9%, respectively. 
Participants who made omission errors in this study reported lower cognitive load 
compared with those who did not, suggesting that the allocation of insuffcient cog-
nitive effort to the prescription task was a factor in these automation bias errors 
(Lyell, Magrabi, & Coiera, 2018). 

Another set of studies investigated possible risks of automation bias in interac-
tion with computer-aided detection aids (CADs) in radiology (Alberdi, Povyakalo, 
Strigini, & Ayton, 2004; Alberdi, Poviakalo, Strigini, Ayton, & Given-Wilson, 
2008). Experienced radiologists examined a set of mammograms either with or with-
out the support of a detection aid that suggested areas containing lesions. The frst 
study mainly focused on the risk of omission errors in cases where the CAD failed 
to prompt critical areas, that is, left a mammogram unmarked although there were 
signs of cancer or misplaced a prompt away from an area that was critical (Alberdi 
et al., 2004). Compared to a flm reading without the aid, such false prompts decreased 
the detection rates considerably from 46% to 21% and 66% to 53%, respectively. 
Obviously, the flm readers in this study tended to take the absence of a computer 
prompt as evidence for the absence of cancer. The authors interpreted this fnding as 
evidence for automation bias, possibly due to a reduced vigilance when supported by 
a CAD. The second study looked specifcally at performance consequences of false 
positive prompts, that is, prompts that were placed although actually no signs of 
cancer were present (Alberdi et al., 2008). Again, some evidence for automation bias 
was found. Falsely placed prompts signifcantly raised the probability by 12.3% that 
the prompted areas actually were marked as malignancy compared to an unaided 
condition. Compared to the performance consequences of missed prompts, how-
ever, this effect was relatively weak, suggesting that with such systems’ false positive 
prompts providing opportunities for commission errors might be more tolerable than 
false negative prompts possibly provoking errors of omission. 

Process Control 
Some even stronger effects of automation bias have been reported from studies 
investigating performance consequences of automated decision aids in simulated 
process control tasks (Bahner, Hueper, & Manzey, 2008; Manzey, Reichenbach, 
& Onnasch, 2012; Reichenbach, Onnasch, & Manzey, 2011; Sauer, Chavaillaz, 
& Wastell, 2016; Wickens, Gutzwiller, & Santamaria, 2015). In all of these stud-
ies, a process-control microworld that simulates an autonomously running life-
support system in a remote space habitat was used (AutoCAMS; Manzey et al., 
2008). As a rule, students with a background in engineering served as operators 
in these studies. Their task was to monitor the system and to intervene manually 
in the case of failures. While performing this supervisory-control task, they were 
supported by an automated fault identifcation and repair agent (AFIRA) that, in 
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the case of failures in the life-support systems, provided the operators with an 
alert accompanied by an automatically generated failure diagnosis and/or further 
hints for proper failure management. In the case of correct diagnoses and advice 
provided by AFIRA, operators’ performance in terms of failure identifcation and 
fault management improved and became close to perfect, compared to when they 
had to perform the task without the decision aid. However, in the case of an incor-
rect diagnosis provided by the aid, converging evidence for automation bias was 
found in all studies referred to earlier. This was refected in up to 80% of opera-
tors committing a typical commission error, that is, following the AFIRA advice 
although inspecting other available information would have proved it wrong. The 
effect was particularly evident for the frst occurrence of such a failure of the decision 
aid (“frst-failure effect”; Wickens, Clegg, Vieane, & Sebok, 2015). More specifc 
analyses revealed that this sort of automation bias often occurred despite the fact that 
the operators had inspected other relevant data in order to cross-check the diagnosis 
of the aid at hand. That is, they either discounted this contradictory information or did 
not process it properly (Manzey et al., 2012). 

Command and Control 
Additionally, issues of automation bias have also been reported from interactions 
with intelligent decision-support systems for command-and-control operations in the 
military domain (e.g., Crocoll & Coury, 1990; Cummings, 2004; Rovira, McGarry, 
& Parasuraman, 2007). Decision-support systems in this domain include, among 
others, automated target identifcation and engagement systems. As reported by 
Cummings (2004), erroneously following such automated aids has already con-
tributed to fatal military decisions, including friendly fres during the Iraq War. 
Systematic research in this domain has addressed the effects of front-end and back-
end support on military decision making and the risks if the decision aids provided 
inaccurate advice (e.g., Crocoll & Coury, 1990; Rovira et al., 2007). For example, 
Rovira et al. (2007), investigated how different target-identifcation systems would 
impact the quality of military decisions under time pressure. The DSSs used in this 
study differed with respect to their reliability and to what extent they just provided 
front-end information analysis support or also back-end decision support. In line 
with the results from other domains, all of the aids led to performance improvement 
in terms of reduced decision times and higher number of correct decisions made 
compared to unaided control conditions. However, in the case of incorrect advice of 
the aids, a number of commission errors occurred and decision accuracy declined 
from 89% in the unaided condition to a mean of only 70% in the supported condi-
tions. The most pronounced performance decrements were found for aids that pro-
vided a high level of back-end support (i.e., made a specifc recommendation for one 
particular response option) with an overall high level of reliability. 

Factors Impacting Automation Bias 

It does little good to remind human operators that automation is not always reliable or 
trustworthy when their own experience tells them it can be trusted to perform correctly 
over long periods of time (Billings, 1996, p. 97). 
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A number of factors have been suggested to impact the management of errors in 
interaction with automation and, thus, also the risk of automation bias when using 
DSSs. Major factors include individual characteristics and attitudes of the human 
operator, characteristics of system design, and different aspects of the task context 
(see also McBride, Rogers, & Fisk, 2013 for an elaborated discussion of error man-
agement in human-automation interaction). 

INDIVIDUAL FACTORS 

Trust and Overtrust. A key component in human-automation interaction is 
the extent to which the operator trusts the system (e.g., Chen & Barnes, 
2014; Lee & See, 2004). Bailey and Scerbo (2007), for example, found 
an inverse relationship between trust and monitoring performance. In 
general, fndings across many studies suggest that automation reliabil-
ity is strongly associated with trust development and maintenance, and 
that operators adjust their trust in automation in line with its perfor-
mance (Hoff & Bashir, 2015). Experience with reliable automated sys-
tems increases trust; negative experiences with automation can reduce it, 
with the negative feedback loop causing considerably stronger and longer-
lasting effects (Manzey et al., 2012). It seems reasonable to posit that the 
level of individual trust in a certain DSS also impacts automation bias. 
This might also explain in part why professionals working with highly 
reliable systems are equally as susceptible to automation bias as novices 
(e.g., Mosier et al., 1998) — extensive experience with highly reliable 
automation induces trust and reduces the odds that experts will conduct a 
thorough information search to verify automated information and advice. 
However, clear empirical evidence that explicitly supports a link between 
individual trust and the occurrence of omission and commission errors is 
still lacking. 

Furthermore, there is evidence that individuals differ in their proneness 
to rely too much on automated systems. This individual tendency has been 
referred to as complacency potential (Singh, Molloy, & Parasuraman, 1993) 
and is assumed to be dependent on perceived system properties (e.g., reli-
ability) as well as individual characteristics of the human operator such as 
general attitudes toward technology or personality characteristics such as 
self-effcacy (Parasuraman & Manzey, 2010; Prinzel, 2002). More recent 
work even suggests that the basis of these individual differences is a genetic 
variance in the dopamine beta hydroxylase gene (Parasuraman, de Visser, 
Lin, & Greenwood (2012). However, more research is certainly needed 
before any decisive conclusions about systematic individual differences in 
proneness toward automation bias can be made. 

Accountability for Decisions. Early attempts to mitigate automation bias 
drew from the debiasing techniques of the social psychology literature. 
Mosier, Skitka, and colleagues demonstrated that the imposition of prede-
cisional accountability (before performing or making a decision; Hagafors 
& Brehmer, 1983) for accuracy and overall performance resulted in lower 

Prop
ert

y o
f C

RC Pres
s



 
 
 
 
 
 
 
  
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

27 Humans and Automated Decision Aids 

rates of omission and commission errors compared to nonaccountable 
student participants (Skitka, Mosier, & Burdick, 1999). Experimentally 
manipulated accountability demands did not have the same impact for 
professional pilots in fight scenarios; however, pilots who reported an 
internalized perception of “accountability” for their performance and 
strategies of interaction with automation were signifcantly more likely 
to double-check automated cues against other information and less likely 
to commit errors than those who did not share this perception (Mosier 
et al., 1998). The researchers suggested that “debiasing” decision making 
through externally imposed accountability does not show much promise 
for eliminating automation bias in professionals; it may be better to train 
behaviors that can mitigate its impact, such as verifying automated infor-
mation against other available data. Other interventions, such as provid-
ing practical experiences with automation errors during training, may be 
more effective (Bahner et al., 2008). 

SYSTEM PROPERTIES 

Besides factors related to the human user of DSS, characteristics of the DSSs them-
selves, such as their reliability, whether they provide front-end or back-end support, 
their transparency and understandability, and how easy it is to cross-check or verify 
their outputs, have been suggested to impact the risk of automation bias. 

Reliability. Automation bias is a direct refection of what has been referred 
to as ironies of automation (Bainbridge, 1983), that is, that highly reli-
able automation improves performance if it works correctly but may make 
things even worse compared to no automation support in the case of auto-
mation errors. More specifcally, the likelihood of automation bias seems 
to be directly linked to the reliability of DSSs. Direct supporting evidence 
for this relationship has been provided by Bailey and Scerbo (2007), using 
a complex system monitoring task supported by different alarm systems 
as examples of simple front-end DSSs. They found that omission errors as a 
consequence of automation errors (misses of detecting a critical state) 
increased from 32.4% to 48.3% when the reliability of the DSSs increased 
from 0.87 to 0.98. Similar results were also reported from Rovira et al. 
(2007). Using an automation monitoring task supported by different DSSs 
providing front-end or back-end support (see also the next section), they 
found overall higher levels of omission errors with more reliable (0.75) 
than unreliable (0.50) DSSs. Furthermore, the predictability of reliability 
in terms of its dynamic variability seems to play a role with respect to 
omission errors. This is suggested by the study by Parasuraman, Molloy, 
& Singh (1993), which showed that omission errors in interaction with 
imperfect alarm systems were more likely when the reliability of the 
alarm system remained constant across experimental blocks than when 
it varied between low and high in different blocks. However, less and 
somewhat inconsistent data are available for direct links between DSS 
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reliability and the occurrence of commission errors in the case of wrong 
DSS recommendations. As reported earlier, Rovira et al. (2007) found 
higher rates of commission errors with a reliable (0.80) than with an 
unreliable (0.60) back-end DSS in a command and control task, which 
corresponds to the fndings for omission errors described previously. 
Other studies also reported higher compliance and smaller rates of cross-
checking the automation with higher reliability alarm systems, but this 
seemed to refect more of a well-adapted behavior than a form of over 
compliance and automation bias (Manzey, Gérard, & Wiczorek, 2014). 
Studies that investigate compliance rates with complex DSSs or that vary 
reliability and possible performance consequences in terms of automation 
bias are still lacking. 

Front-End versus Back-End Support. Some of the evidence for the possible 
signifcance of front-end versus back-end support in command and control 
tasks has been mentioned previously. When studying risks of automation 
bias in interaction with automated target identifcation systems, Rovira et al. 
(2007) found that particularly systems providing back-end support reduced 
the overall reliability of decisions made in cases of wrong advice, which 
confrmed earlier fndings of Crocoll and Coury (1990). Similar effects 
have also been reported from studies in aviation. For example, Sarter and 
Schroeder (2001) investigated the performance consequences of infight-
icing alerting systems in airplane cockpits. Two systems were compared in 
this study. The frst one included a status display providing pilots (front end) 
with information about the icing condition (wing icing or tailplane icing) 
but leaving the decision about a proper action with the pilots. The second 
system included a command display, directly providing (back-end) specifc 
advice to the pilots about what to do. The results showed that both sorts of 
the DSS considerably improved the overall speed and number of correct 
decisions made by the pilots. However, in the case of inaccurate advice, 
the systems caused more decision errors than in an unaided control condi-
tion, and this effect was stronger for the back-end than the front-end aid. 
Laboratory studies addressing the impact of different types of DSSs in pro-
cess control did not fnd differences between a front-end and back-end DSS 
in terms of manifest commission and omission errors. However, individu-
als spent less effort in cross-checking information against other available 
sources, that is, they showed monitoring behavior indicative of automation 
bias, when supported by a back-end rather than a front-end DSS (Manzey 
et al., 2012). Furthermore, there is evidence that the extent to which back-
end support is provided might make a difference with respect to risks of 
automation bias in the case of incorrect advice (Layton, Smith, & McCoy, 
1994). In a study addressing the possible performance consequences of a 
DSS supporting fight planning of pilots in aviation, the authors compared 
electronic fight planning tools that provided pilots with automatically gen-
erated suggestions for an optimum fight plan. They found that these tools 
do not always improve the quality of fight planning. Specifcally, they 
found that pilots tended to accept the electronic fight plans even though 
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they were suboptimal. Most important in this context, this tendency was 
stronger for tools recommending a specifc fight plan (high-level back-end 
support) than for tools that created different options but left the fnal choice 
to the pilots (low-level back-end support). 

Altogether, the different studies referred to here suggest that front-end 
DSSs might be less conducive to automation bias in the case of incorrect 
advice than more directive back-end DSSs, and that the more defnitive 
the advice provided by the latter, the more conducive to automation bias 
they are. This fts to the more general “lumberjack” hypothesis stated by 
Onnasch et al. (2014) that higher degrees of automation provide higher ben-
efts than lower levels in cases of reliable routine operation but increase 
risks of errors and return-to-manual performance decrements in cases of 
automation failures. However, the effects with respect to automation bias 
found in the different studies were usually relatively small, and other design 
factors of DSSs might be even more important for affecting risks of auto-
mation bias. 

Automation Visibility. Such other design factors might include the transpar-
ency of DSSs, the understandability of their functioning, and the effort it 
takes to cross-check and verify their outputs. Specifcally, system under-
standability and transparency have been considered to be key antecedents 
to the development and calibration of system trust (e.g., Chen, Barnes, & 
Harper-Sciarini, 2011; Lyons et al, 2016; Sheridan, 1989). A recent study in 
the railway sector, for example, identifed understanding of the automation, 
rather than system reliability, as the key component in developing trust in 
a DSS (Balfe, Sharples, & Wilson, 2018). Evidence for the importance of 
visibility in mitigating automation bias has been provided by McGuirl and 
Sarter (2006). Capitalizing on the earlier research on effects of infight-icing 
alerts (Sarter & Schroeder, 2001), they investigated how pilots’ decision 
making in response to infight icing encounters would be affected by DSSs 
that provided system confdence information together with the automati-
cally generated front-end or back-end information/advice. The confdence 
information was updated on a trial-by-trial basis and was presented to the 
participants in a separate trend display. Independent of whether front-end 
or back-end support was provided, the pilots receiving this additional infor-
mation were less prone to automation bias in the case of inaccurate infor-
mation, apparently because they were better able to assess the validity of 
the aids’ recommendations. Analogous effects have recently been reported 
from so-called likelihood alarm systems (front-end DSS) that provide bet-
ter options to estimate the likelihood of critical events in the case of alerts 
than binary alarm systems and that were found to improve human decision 
making particularly in response to system errors, that is, false or missed 
alerts (Wiczorek & Manzey, 2014). However, independent of whether or not 
likelihood information was provided, the fewest number of commission and 
omission errors were made when information to cross-check and verify the 
output of the alarm systems was available and easily accessible. This sug-
gests that also the accessibility of automation verifcation information can 
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impact the risk of automation bias. Thus, it can be expected that design deci-
sions concerning the display of verifcation data (e.g., surface display versus 
layered or hidden display) will impact whether or not decision makers will 
trust DSSs or make the effort to verify their output. Overall, automation 
visibility, that is, its transparency in terms of its sources and functioning 
(Dorneich et al., 2015) and the ease of accessibility of automation verifca-
tion information, seems to be a key determinant in whether decision makers 
will cross-check or just (over-)trust system information. This directly fts to 
recent fndings from a meta-analysis of automation bias in interaction with 
DSSs in different domains, which also suggests that risks of automation 
bias are directly related to the effort needed to verify the output of a DSS 
(Lyell & Coiera, 2017). 

TASK CONTEXT 

DSSs are introduced to support individuals in accomplishing certain tasks. Thus, 
it seems reasonable to assume that the task itself or the specifc situational circum-
stances under which a task has to be performed, that is the task context, also impacts 
how individuals interact with DSSs and make use of them. For example, it can be 
assumed that factors like time pressure, workload, the expected performance conse-
quences of decision errors, or the social context in which a task has to be performed 
might have an impact on the risk of automation bias. However, only a few studies 
have addressed these sorts of factors thus far. 

Time Pressure. It has been known for some time that time pressure can have 
a considerable impact on human judgment and decision making (Edland & 
Svenson, 1993). More specifcally, humans have been shown to compensate 
for time pressure in judgment and decision making by abandoning a time-
consuming rational analytic strategy, based on comprehensive information 
search, in favor of a faster heuristic strategy based on considering only the 
most important (valid) cues (Rieskamp & Hoffrage, 2008). Often, this use 
of heuristics instead of a full information search and weighting allows for 
making quicker decisions without compromising quality to a signifcant 
extent (Gigerenzer & Gaissmaier, 2011). Analogous to these fndings, one 
might assume that time pressure also would lead humans to depend more 
on DSSs, that is, to use their particularly salient and usually (but not always) 
correct advice directly as a basis for fast judgments and decision making 
without fully evaluating the available information from the environment. 
This assumption has been addressed in a series of experiments by Rice 
and colleagues (Rice, Hughes, McCarley, & Keller, 2008; Rice & Keller, 
2009; Tunstall, Rice, Mehta, Dunbar, & Oyman, 2014). Specifcally, they 
investigated to what extent time pressure would affect dependence on front-
end DSSs in situations where humans had to make binary decisions about 
the presence of critical targets based on the visual inspection of complex 
images. After getting the advice of the DSS (i.e., critical target present or 
absent), participants in their studies had either two or eight seconds for their 
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own inspection of the visual images before they had to commit to a deci-
sion. The DSSs used in these studies did not miss any targets but provided 
a different number of false alarms affording the opportunity for automation 
bias in terms of commission errors. What Rice et al. consistently found was 
a higher compliance rate with the DSS under the high compared to low 
time-pressure conditions. This effect emerged largely independent of the 
reliability of the DSSs ranging from highly reliable (0.95) to fairly reliable 
(0.65) systems. At least part of this higher compliance with DSS advice 
under time pressure seems to refect fairly rational behavior, given that 
the time for a comprehensive information search is limited and the objec-
tive dependence on a DSS gets higher. This was also refected in the per-
formance effects. The higher compliance rates under time pressure did not 
lead to overall performance decrements when the reliability of the DSS was 
high. Compared to an unsupported control condition, even more correct 
decisions were produced under time pressure with support of the highly 
reliable DSS. 

It seems that, in this case, the performance costs of automation bias 
effects in terms of commission errors when erroneously responding to false 
alarms were less than the performance benefts gained by also following 
the DSS more often when it was correct. As a consequence, Rice et al. 
recommend moderate time pressure as a possible means to improve compli-
ance with highly reliable DSSs. However, clear overall performance costs 
due to automation bias effects emerged with the least reliable DSS. Here, 
the same strategy of higher dependence on the DSS under time pressure 
caused performance to drop even below the performance achieved when no 
DSS was available (Rice et al., 2008; Rice & Keller, 2009). These results 
directly indicate the mixed blessing of heuristic use of a DSS under condi-
tions of time pressure. It can improve performance if the reliability of the 
DSS is high but can lead to severe automation bias errors in the case of 
comparatively low DSS reliability. Surprisingly, the empirical evidence for 
the impact of time pressure is largely limited to front-end DSSs. A gener-
alizability to back-end DSSs seems highly plausible but requires further 
evidence. 

Workload. Similarly, also the overall workload of an individual has repeat-
edly been shown to affect an individual’s reliance and compliance in 
interactions with DSSs. An example of the former is an early fnding of 
Parasuraman et al. (1993) suggesting that complacency effects and result-
ing omission errors in response to unreliable automation particularly arise 
in multitasking contexts, that is, when the task supported by a DSS is 
one of several tasks to be performed concurrently. It seems that when 
multitasking, individuals tend to lower the priority of the task supported 
by a DSS and the effort to be invested in cross-checking the automation 
in favor of the other tasks. Whereas such behavior, on the one hand, cer-
tainly refects a reasonable (and intended) consequence of introducing a 
DSS (Moray, 2003), it also can increase the risk of automation bias if it is 
not balanced properly. 
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Other fndings have provided converging evidence of the same processes 
occurring for errors of commission. For example, Manzey et al. (2014; Exp. 2 
and 4) compared compliance rates with front-end DSSs (alarms systems) 
under conditions where participants had to perform one or two tasks con-
currently to the task supported by the DSS. The raised workload in the two-
task condition increased the direct compliance rate, that is, the frequency of 
responses to the alarm without consulting other available information, for 
a relatively unreliable (0.70) DSS from about 20% to almost 60%, resulting 
in a considerably higher rate of commission errors when the workload was 
high. Even more direct support for workload impacting the dependence on 
DSSs has been provided by other studies (Biros, Daly, & Gunsch, 2004; 
Dorneich et al., 2015). Biros et al. (2004) studied to what extent workload 
would change the link between trust in DSSs and reliance on their advice 
in a command and control scenario. More specifcally, they varied trust in 
a DSS supporting tactical decisions by means of different instructions and 
investigated to what extent this variation would have an impact on DSS use 
depending on the overall task load. Task load was operationally defned by 
the complexity of information to be considered in the decision task. While 
differences in trust directly predicted the use of automation in the low task-
load condition, participants tended to rely on the automation independent 
of their trust in the DSS when the task load was high. The higher task load 
obviously led to less skeptical overreliance on the DSS, although the par-
ticipants were aware that the advice might be wrong and, thus, accepted the 
higher risk of committing commission errors when using the aid. Similarly, 
Dorneich et al. (2015) found that air transport pilots tended to over-trust an 
information automation system when they were under a high workload and 
chose the top plan suggested by the system, even though information was 
missing and the plan was not the best one. Note that these fndings paral-
lel the fndings of time-pressure effects on human dependence on DSSs. 
Particularly multitasking situations, but also high workload situations in 
general, can be considered as situations where the time for judgment and 
decision making is lowered due to other task demands, implicitly inducing 
a sort of time pressure for humans. 

However, workload that is too low (“underload”) might also be detri-
mental for human-automation performance and can increase automation 
bias effects. This is suggested by the recent work of Lyell and colleagues, 
who found that participants who made omission errors reported lower cog-
nitive load compared with those who did not, suggesting that low cognitive 
load led to the allocation of insuffcient cognitive effort to the experimental 
task, which was a factor in these automation bias errors (Lyell et al., 2018). 
Yet, it is not clear what cause and effect is in these fndings, and clearly 
more research on effects of underload will be needed before any decisive 
conclusions about effects of underload on automation bias can be drawn. 

Consequences of Errors. Evidence that the consequences of potential errors 
committed by an operator might affect verifcation behavior and the risk 
of automation bias was provided by two of the frst studies of automation 
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bias (Mosier et al., 1998; Mosier, Skitka, Dunbar, & McDonnell, 2001). In 
this research, pilots were required to perform different fight tasks during a 
simulated fight from San Francisco to Los Angeles (Mosier et al., 1998) or 
different approaches to San Francisco (Mosier et al., 2001) in a low-fdelity 
part-task fight simulator. During the fight, different automation failures 
occurred, which provided opportunities to commit omission and commis-
sion errors as manifestations of overreliance or over compliance with the 
automated systems. In both studies, the criticality of errors turned out to be 
an important predictor of omission errors. For example, automation failures 
related to altitude control (e.g., misloading an altitude clearance in the auto-
pilot) were more often detected than failures related to the communication 
system (e.g., misloading a frequency change). Thus, it seems that pilots still 
monitored and verifed actions of DSSs related to fight critical tasks but 
were less vigilant in monitoring subsystems less critical for fight safety, 
and this effect occurred independent of whether the simulations were 
accomplished by single pilots (Mosier et al., 1998) or two-person crews 
(Mosier et al., 2001). 

Individuals versus Teams. Most of the research on the automation bias phe-
nomenon has been conducted in a single-person performance confguration. 
However, some highly automated decision environments, such as aircraft 
cockpits, involve teams rather than solo decision makers. Whether or not 
this condition of shared responsibility makes a difference with respect to 
automation bias and risks of committing omission and commission errors 
when DSSs err was investigated in a pair of studies by Mosier and col-
leagues. Specifcally, they examined individuals versus teams of commer-
cial class cockpit pilots (Mosier et al., 2001) and students (Skitka, Mosier, 
Burdick, & Rosenblatt, 2000) performing simulated fight tasks under vary-
ing instruction conditions. Results demonstrated the persistence of automa-
tion bias in teams for both samples. 

CONCLUSION, PRESENT TRENDS, AND FUTURE POSSIBILITIES 

Clearly, automation bias is still a ubiquitous phenomenon in the interaction of humans 
and DSSs, which is particularly relevant with highly, but not perfectly reliable, sys-
tems. It thus directly refects an irony of automation (Bainbridge, 1983), namely that 
highly reliable DSSs on the one hand certainly improve the human judgment and 
decision making when working properly but, at the same time, lead to automation 
bias in the case of automation errors. 

Even more important, automation bias does not necessarily result from human 
weaknesses in automation monitoring but can directly result from quite rational 
behavior in interactions with automated systems (Moray, 2003). Thus, directly cor-
responding to the assumption that using heuristics in human decision making is not 
necessarily bad but can “make us smart” (Gigerenzer & Todd, 1999), using highly 
reliable DSSs as a heuristic most times leads to positive effects like reduced cogni-
tive effort and better decisions. And most organizations want their decision makers 
to trust — and not constantly second-guess — the automated support they have 
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provided! Lüdtke and Möbus (2005) have proposed that interactions with highly reli-
able DSSs over time might lead to an effect of learned carelessness. That is, making 
the repeated experience that the automation works properly even without close moni-
toring, the tendency to directly use the advice of DSSs as a heuristic for decision 
making, is amplifed by a sort of positive feedback loop (see also Parasuraman & 
Manzey, 2010). This might also explain why human-focused approaches to improve 
automation verifcation and mitigating automation bias, such as making individuals 
accountable for their interactions with automation or aware of the nonperfect reli-
ability of systems and the related risk of automation bias, have had minimal success 
(Skitka, Mosier, & Burdick, 2000) unless human users have the direct experience 
of automation errors (Bahner et al., 2008). Thus, the main challenge of mitigating 
automation bias lays with a proper design of DSSs, specifcally in fnding a delicate 
balance between designing automation that facilitates decision making and creating 
an environment that fosters automation bias. Achieving this balance is essential to 
creating a human-automation match that improves performance considerably with-
out introducing new risks, even though it still may not be as perfect as a match “made 
in heaven.” A few current design trends and future possibilities are geared toward 
accomplishing this. 

BALANCING THE TRADE-OFFS 

Several design factors that might help to mitigate the risk of automation bias in inter-
action with DSS can be identifed from the research presented previously. Beside 
the tendency for front-end DSSs to be a bit more resilient toward automation bias 
than more directive back-end DSSs, a more general take-away message from the 
research discussed here concerns the role of transparency, including understand-
ability and predictability. Particularly, proper system feedback during use — espe-
cially cognitive feedback that provides information on how a DSS functions and the 
relationships among information and DSS output — is a form of transparency that 
can facilitate understanding of DSS functioning and accurate calibration for its use 
(Seong & Bisantz, 2008). Many early DSSs were opaque in their functioning and did 
not provide the decision maker with any map of their situation (mental) model, ratio-
nale for their recommendations, or justifcation for their recommendations. Early in 
the evolution of aviation automation, Billings (1996) already emphasized the need 
to train pilots how systems operate rather than simply how to operate systems: “If 
a pilot does not have an adequate internal model about how the computer works 
when it is functioning properly, it will be far more diffcult for him or her to detect a 
subtle failure. We cannot always predict failure modes in these more complex digital 
systems, so we must provide pilots with adequate understanding of how and why air-
craft automation functions as it does” (p. 96). Operators must have suffcient knowl-
edge of what DSSs can do, what they “know,” and how they function within the 
context of other systems as well as knowledge of their limitations, in order to utilize 
them effciently and avoid errors of automation bias. System feedback that seems 
to be particularly important in this respect is the provision of confdence informa-
tion along with advice and recommendations provided by a DSS. Examples include 
information about the quality of the database used by a DSS (e.g., the accuracy of 
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positions identifed by a GPS), likelihood information about the presence of a criti-
cal situation indicated by a front-end DSS (Wiczorek & Manzey, 2014), or feedback 
about the strength of evidence supporting the output of a back-end DSS (McGuirl & 
Sarter, 2006). 

DSS AS A TEAM MEMBER 

An overarching design principle is to look at DSSs as members of a human-
automation team. The team-member metaphor as a possible guiding principle has 
been introduced to automation research and design by Christoffersen and Woods 
(2002). With respect to DSSs this suggests designing a system to function like a true 
team member, under the assumption that components of successful human-automa-
tion teams mirror those of effective human-human teams (Mosier, Fischer, Burian, 
& Kochan, 2017). This perspective is consistent with current tendencies to adapt 
human-human concepts — for example, trust — to human-automation interaction 
and to evaluate automated DSSs according to these human characteristics. The ideal 
DSS then would incorporate not only the most needed abilities of automated deci-
sion support — such as the ability to sense, synthesize, and integrate large amounts 
of data and information, to perform calculations quickly, and to detect malfunctions 
and failures — but also incorporate into the design characteristics that are desired in 
a human crew member and that are known to make a difference in human teamwork. 
On the one hand, this would include the sort of transparency and understandability 
mentioned previously as ideal human crewmembers are observable when acting, are 
predictable with respect to their next actions, and provide a justifcation of their 
intentions and actions. Beyond that, ideal DSSs would also resemble human crew 
members in other aspects, including responsiveness to direction, fexibility in pro-
viding advice and recommendations on a level (front-end versus back-end) needed 
by the human, and the ability to adapt to contextual factors like workload and time 
pressure that current DSSs may not be able to consider. Finally, an ideal DSS would 
be able to monitor the human as the human monitors the DSS. 

Concrete examples of more advanced DSSs in this respect include DSSs that 
are adaptable or even adaptive to the needs of human users, ensuring that the best 
type of support (front end and/or back end; low level versus high level) is easily avail-
able and verifable at the right time, especially when decisions need to be made under 
time pressure (Mosier et al., 2017; Burian, Mosier, Fischer, & Kochan, in press). 
Adaptable DSSs are adjusted by the operator, who maintains control over automation 
and is able to designate whether the human or automation will do all or part of tasks. 
Thus, individual operators can choose the level of support they prefer. Examples how 
this might be implemented and used by individual operators are provided by Sauer 
and Chavaillaz (2018). In contrast, with adaptive systems, the automation controls 
the division of tasks and may automatically change the sort of support provided in 
response to individual states of the human user (e.g., fatigue, stress) or task-context 
factors (e.g., time pressure, workload; Sheridan & Parasuraman, 2006). An example 
of the latter is the TCAS in modern airplanes, which dynamically changes its basic 
characteristic from front-end to back-end support with increasing time pressure. As 
long as the situation allows, TCAS provides front-end informational support with 
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accompanying lower risks of automation bias and changes to back-end action direc-
tives only when time pressure becomes so high (i.e., imminent collision) that imme-
diate compliance with the highly reliable confict resolution advisory — despite 
associated risks of automation bias — is the safer option. Another conceptualization 
of adaptive automation is context-sensitive information automation, which would 
sense and take into account the situation or context, tailoring information support to 
characteristics such as specifc task demands, environmental factors, system status, 
and human cognitive and performance variables (Mosier et al., 2017). This notion, 
however, is only at the conceptual stage, and the potential automation bias risks in 
this type of system are unknown. 

A recent and even more far-reaching approach, enabled by current technologi-
cal advances, indeed treats human and “automated agents” as interdependent team 
members who share a common mental model of situations and goals and can coor-
dinate and collaborate activities, monitor each other, provide feedback to each other, 
and adapt dynamically to contextual demands. This approach, characterized as 
Coactive Design (e.g., Bradshaw, Dignum, Jonker, & Sierhuis, 2012; Johnson et al., 
2011), adheres to the design principles of observability, predictability, and directabil-
ity (Johnson et al., 2014), which is intended to facilitate teamwork behaviors such as 
monitoring progress and providing back-up behavior and make coordinated action 
possible. The implementation of Coactive Design is still in its infancy, although it 
has already been applied to the development of a humanoid robot to assist a human 
operator during disaster relief (Johnson et al., 2014). However, the concept of human-
DSS interdependence and automation autonomy will most likely fgure in the design 
of future automated decision support. One caveat for the notion of a more human-
like automated team member — because “humanizing” automation (particularly 
anthropomorphism) enhances trust — designers will have to ensure that it does not 
inadvertently promote automation bias (e.g., de Visser et al., 2016; Pak, Fink, Price, 
Bass, & Sturre, 2012) 

In summary, it seems that the match between humans and DSSs has many advan-
tages but is not perfect. Actually, it seems that humans and DSSs represent more a match 
made on earth than a match made in heaven! As with all other earth-made matches, 
continuous attention is needed from both sides, the system design and the human user, 
to keep the match working smoothly and to achieve the best balance between maximiz-
ing the benefts of technological advances and, at the same time, minimizing the risks 
of automation bias. The present review suggests that this is a complex undertaking that 
needs consideration of system characteristics, characteristics of the human user, and 
characteristics of the situational context in which DSSs are used. 
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